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MATH3030 Tutorial 1

J. SHEN

14 September, 2022

1 Review of Sn

1.1 Definition

Recall that, given an integer n ≥ 2, the n-th symmetric group Sn is the set of

bijective maps from the set In = {1, ..., n} onto itself equipped with the composition

of maps.

1.2 Cycle Decomposition, Product of Transpositions

Theorem 1.1. Each permutation can be written as a product of disjoint cycles.

We will assume this theorem, and work the following example to devise our

algorithm. To prove the theorem, you then only need to make this algorithm precise

and formal and check its validity.

(HW1 Optional part Q2): Express the permutation of {1, 2, 3, 4, 5, 6, 7, 8} as a

product of disjoint cycles, then as a product of transpositions:

(a)

(
1 2 3 4 5 6 7 8

8 2 6 3 7 4 5 1

)
=(18)(364)(57)=(18)(36)(64)(57).

(b)

(
1 2 3 4 5 6 7 8

3 6 4 1 8 2 5 7

)
=(134)(26)(587)=(13)(34)(26)(58)(87).

(c)

(
1 2 3 4 5 6 7 8

3 1 4 7 2 5 8 6

)
=(13478652)=(13)(34)(47)(78)(86)(65)(52).
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1.3 A map from Sn to GLn(R)

We define here a matrix Rg ∈Mn(R) for any g ∈ Sn.
Let n ∈ Z>0. Let {e1, e2, ..., en} be the standard basis of Rn. We may consider

g as permuting the indices of this basis, that is, we let g.ei = eg(i). Note that this

extends to a linear transformation ρg : Rn → Rn. We let Rg be the n× n real

matrix that is associated to ρg.

For example, let g = (1, 2, 3), h = (1, 2), then g ◦ h = (1, 3) and h ◦ g = (2, 3).

Rg =

0 0 1

1 0 0

0 1 0

 , Rh =

0 1 0

1 0 0

0 0 1

 .

Rg◦h =

0 0 1

0 1 0

1 0 0

 , Rh◦g =

1 0 0

0 0 1

0 1 0

 .

RgRh =

0 0 1

0 1 0

1 0 0

 , RhRg =

1 0 0

0 0 1

0 1 0

 .

Theorem 1.2. In general, ρg◦h = ρg ◦ρh, and so Rg◦h = RgRh. Therefore, we have

a group homomorphism ρ : Sn → Aut(Rn), or a group homomorphism R : Sn →
GLn(R). These are called the regular representation of Sn.

Proof.

For each i = 1, 2, ..., n, ρg◦h(ei) = eg◦h(i) = ρg(ρh(ei)). Since ρg◦h and ρg ◦ ρh
are linear operators from Rn to Rn, and they agree on a basis, they must be equal:

ρg◦h = ρg ◦ ρh.
Taking their corresponding matrices, we get Rg◦h = RgRh.
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1.4 Sign of a permutation

Recall that the determinant function det : GLn(R)→ R× is a group homomorphism.

We may now compose this with R and get a group homomorphism det ◦R : Sn →
R×.

Note that the image of det ◦R is {±1}. We define sgn = det ◦R. Then sgn(gh) =

sgn(g) ◦ sgn(h) for any g, h ∈ Sn. Note that a transposition has sign -1. Therefore,

if g is a product of an odd number of transpositions, sgn(g) = −1, and we call g

an odd permutation. On the other hand, if g is a product of an even number of

transpositions, sgn(g) = 1, and we call g an even permutation.

We have also shown that the product of an odd number of transpositions is never

equal to the product of an even number of transpositions.

Decide the sign/parity of each of the permutations in 1.2.

Answer:

The permutation in (a) is even. The permutations in (b) and (c) are odd.

1.5 Conjugate Formula

Computation:

(1, 2, 3)(1, 2, 3, 4)(1, 2, 3)−1=(2,3,1,4).

g(1, 2, 3, 4)g−1=(g(1), g(2), g(3), g(4)).

g(1, 2, 4)(3, 5)g−1=(g(1), g(2), g(4))(g(3), g(5)).

Question: Are elements of the same cycle structure conjugate to each other? (For

example: find g ∈ S7 such that g(2, 3, 5, 7)(1, 6)g−1 = (1, 4, 7, 3)(2, 5).)

Answer:

Yes. One may write out all the implicit 1-cycles, and match them. In this exam-

ple, g(2, 3, 5, 7)(1, 6)g−1 = g(2, 3, 5, 7)(1, 6)(4)g−1 = (g(2), g(3), g(5), g(7))(g(1), g(6))

(g(4)) = (1, 4, 7, 3)(2, 5)(6). We may make g map 2,3,5,7,1,6,4 to 1,4,7,3,2,5,6 re-

spectively. Both are lists of elements in {1, 2, 3, 4, 5, 6, 7}, and thus g ∈ S7.
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1.6 Some sets of generators of Sn

Try to think of several sets of generators of Sn.

Answer: I1 = All transpostions in Sn.

I2 = {(1, 2), (2, 3), ..., (n− 1, n)}.
I3 = {(1, 2), (1, 3), ..., (1, n)}
I4 = {(1, 2, ..., n)(1, 2)}
......
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2 Normal subgroups

2.1 Conjugate elements

The concept of conjugation is very important in algebra. We say that g, h ∈ G are

conjugate in G if h = xgx−1 for some x ∈ G. This is an equivalence relation. The

conjugacy class [g] of g is the set of elements in G that are conjugate to g.

Note that two matrices A,B ∈ GLn(F ) are conjugate exactly when they are

similar, and that two permutations g, h are conjugate exactly when they have the

same cycle decomposition type (1.5). We used similar matrices to compute matrix

powers.

Conjugate elements have a lot in common: Conjugate elements have the same

order. Conjugate matrices have the same determinant, and conjugate cycles have

the same parity and so on. The basic reason is that conjugation by x defines an

automorphism cx : G → G, and conjugate elements are related by this automor-

phism.

2.2 Normal subgroups

Note that SLn(F ) < GLn(F ) is the subgroup of elements of determinant 1, and

An < Sn is the subgroup of even permutations. These subgroups are unions of

conjugate classes and are normal subgroups:

Definition 2.1. A subgroup N of G is said to be a normal group if for any g ∈ G,
a ∈ N , the conjugate gag−1 ∈ N . We write N ◁G.

The kernel of a group homomorphism ϕ : G→ H is a normal subgroup

of G. This generalizes two examples above: SLn(F ) = ker(det), and An = ker(sgn).

Normal subgroups are analogues of ideals in ring theory. The natural

multiplication law aH.bH = (ab)H on G/H is well-defined exactly when H ◁G. In

this case, this law gives a group structure on G/H.
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2.3 Equivalent definitions

Theorem 2.1. Let H be a subgroup of G. The following are equivalent:

1. For any g ∈ G, gHg−1 ⊆ H.

2. For any g ∈ G, gHg−1 = H.

3. For any g ∈ G, gH ⊆ Hg.

4. For any g ∈ G, gH = Hg.

5. Every left coset of H in G is also a right coset in G.

Proof. (1 ⇐⇒ 3): Suppose gHg−1 ⊆ H. Then gH = gHg−1g ⊆ Hg. Suppose

gH ⊆ Hg, then gHg−1 ⊆ Hgg−1 = H. We can show 2 ⇐⇒ 4 in the same manner.

(3 ⇐⇒ 4) That 4 =⇒ 3 is obvious. On the other hand, suppose we have

g′H ⊆ Hg′ for any g′ ∈ G. Fix a g ∈ G, then gH ⊆ Hg and g−1H ⊆ Hg−1 as

g, g−1 ∈ G. Thus, we have Hg = gg−1Hg ⊆ gHg−1g = gH. Therefore, gH = Hg.

(4 ⇐⇒ 5) Assuming 4, then every left coset gH of H in G is also equal to a

right coset Hg in G.

Conversely, assuming 5, then for any g ∈ G, gH is a right coset in G. But

g ∈ gH, so gH must be the right coset Hg.
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2.4 Normal subgroups of S3, S4

List all nontrivial proper subgroups of S3 on the table in the studying guide. Which

of them is normal?

Answer. All the nontrivial subgroups of S3 are ⟨(12)⟩, ⟨(13)⟩, ⟨(23)⟩, ⟨(123)⟩.
Since a normal subgroup must contain whole conjugate classes, A3 = ⟨(123)⟩ is the
only normal subgroup among them.

Write down the conjugate classes of elements in S4. Normal subgroups must

contain whole conjugate classes. Hence, list all nontrivial proper normal subgroups

of S4.

Answer. There are 5 conjugate classes: [1], [(12)], [(123)], [(1234)], [(12)(34)],

of sizes 1, 6, 8, 6, 3 respectively. If N ◁ S4 is a nontrivial and proper normal

subgroup of S4, then |N | | 24, and |N | is a sum of the numbers appearing above.

Thus |N | = 1 + 3 or 1 + 3 + 8 by enumeration. These correspond to the two cases

N = K = {1, (12)(34), (13)(24), (14)(23)} and N = A4 respectively. The group K

is the standard realization of the Klein 4 group.

2.5 Normal subgroups of Sn, An

Having figured out all the normal subgroups of S3 and S4, we mention that for n ≥ 5,

there is only one proper nontrivial normal subgroup of Sn, that is, An. On the other

hand, An is simple (contain no proper nontrivial normal subgroup) for n ≥ 5. For

example, you may refer to the former tutorial notes with link on blackboard.
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3 Symmetries of solids

We now study several symmetries arising in geometry. We will in particular calculate

the group of isometries of a regular tetrahedron (正四面体), a regular cube (正方

体) or a regular octahedron (正八面体) and a regular dodecahedron (正十二面体)

or a regular icosahedron (正二十面体).

3.1 Isometries

Let X ⊂ Rn be a bounded geometric shape. We consider the set of isometries of Rn

that preserves X. That is, let G = {ϕ : |ϕ(x) − ϕ(y)| = |x − y| for any x, y ∈ Rn,

ϕ(X) = X}. An isometry of Rn is a distance preserving map f from Rn to itself.

We know that [Artin, 6.2] any isometry ϕ is a rotation or reflection followed by

a translation, that is, ϕ = tv ◦ r, where r ∈ On(R), and tv(x) = x+ v is translation

by v ∈ Rn. When det(r) = 1, r is orientation-preserving, while if det(r) = −1, r is

orientation-reversing.

We will be mostly interested in the case where G = Aut(X) is finite. In this

scenario, any g ∈ G always fixes the center of mass x of X. Then G has a fixed

point, which we may take as the origin. Then any g ∈ G is an isometry that fixes

the origin, then |gx| = |x|, |gy| = |y|, |gx−gy| = |x−y| for any x, y ∈ Rn. Note that

⟨x, y⟩ = ((|x|2 + |y|2) − |x − y|2)/2, we see that ⟨gx, gy⟩ = ⟨x, y⟩. One may further

show that g is linear [Artin theorem 6.2.3, (b) =⇒ (c)]. Therefore, g ∈ On(R).
Conclusion: Any finite group of the symmetry of a geometric shape is a subgroup

of On(R). Therefore, we may start by understanding O2(R) and O3(R).
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3.2 SO2(R) and O2(R)

Recall that O2(R) = {A ∈M2(R) : ATA = I2} = {T : R2 → R2 linear | ⟨Tv, Tw⟩ =
⟨v, w⟩ for any v, w ∈ R2} and SO2(R) = {A ∈ O2(R) : det(A) = 1}.

Exercise 1. Show that SO2(R) = {

(
cos(x) − sin(x)

sin(x) cos(x)

)
: x ∈ R}. Hence show

that SO2(R) ≃ R/Z.

Proof. Note that A ∈ SO2(R) ⇐⇒ A−1 = AT and det(A) = 1. Let A =

(
a b

c d

)
.

Then A−1 = 1
det(A)

(
d −b
−c a

)
. Since A−1 = AT , we have a = d, b = −c. Since

det(A) = 1, we have 1 = ad − bc = a2 + c2. Then a = cos(x), c = sin(x) for some

x ∈ R. Thus A =

(
cos(x) − sin(x)

sin(x) cos(x)

)
. Denote this matrix A as A(x).

Define ϕ : R → SO2(R) by ϕ(x) = A(2πx). One can verify that ϕ(x + y) =

ϕ(x)ϕ(y), and ϕ is surjective, with kernel Z. Then by the first isomorphism theorem

of groups, R/Z ≃ SO2(R).

Exercise 2. Note that by Exercise 1, any element in SO2(R) is a rotation. Show

that any element in O2(R) − SO2(R) is a reflection (Hint: It suffices to show that

±1 are eigenvalues of A).

Proof. Let A ∈ O2(R)−SO2(R). Then det(A) = −1. det(A+I) = det(A+ATA) =

det(A) det(I + AT ) = −det(I + A). Therefore, det(A + I) = 0, and −1 is an

eigenvalue of A. Similarly, or using the product of all eigenvalues is det(A) = −1,
we see that 1 is the other eigenvalue of A.

Thus A fixes a nonzero vector v, an sends another nonzero vector w to −w. It

is easy to see that ⟨v, w⟩ = 0, as ⟨v,−w⟩ = ⟨Av,Aw⟩ = ⟨v, w⟩. The two vectors v, w

form an orthogonal basis of R2, and we see that A is the reflection along the line

{kv : k ∈ R}.
Exercise 3. Show that every finite subgroup of SO2(R) is isomorphic to Cn for

some n, and every finite subgroup of O2(R) is isomorphic to Cn or Dn for some n.

Proof. A finite subgroup of SO2(R) corresponds to that of R/Z, by Exercise 1. Let

G < R/Z be finite. For each g ∈ G, we take g be the unique element in (g+Z)∩[0, 1).
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We may assume |G| > 1. Then there is a unique element g in G with smallest

postive g. Then one can show that G = ⟨g⟩. Thus G is cyclic, and thus isomorphic

to Cn.

Let H < O2(R). Let H ′ = H ∩SO2(R). Then H ′ < SO2(R), hence is isomorphic

to some Cn.

Case 1: H ′ = H. Then H ≃ Cn.

Case 2: H ′ ⊊ H. Take any s ∈ H −H ′. We claim that H = H ′ ⊔H ′s. For any

h ∈ H −H ′, hs ∈ H, and det(hs) = −1×−1 = 1. Thus hs ∈ H ′ = H ∩O2(R). By
Exercise 2, s2 = 1, thus h = hss ∈ H ′s. Therefore, H = H ′ ⊔H ′s.

It remains to note that srs = r−1 for any rotation r ∈ SO2(R). To see this,

choose orthonormal basis e1, e2 such that s =

(
−1 0

0 1

)
. If r is the matrix A(x) as

defined in Exercise 1, then sA(x)s = A(−x) = r−1 by direct computation.

To conclude, we have shown H ′ ≃ Cn = ⟨r|rn = 1⟩, and H = H ′ ⊔ H ′s, with

s2 = srsr = 1. Then H = ⟨r, s|rn = s2 = rsrs = 1⟩ = Dn. (More details on this:

Because H is generated by r, s and rn = s2 = rsrs = 1, we have a surjective map

ϕ : Dn → H. Because |Dn| = |H| = 2n, ϕ is bijective, and thus Dn ≃ H.)

3.3 SO3(R)

We will focus on orientation-preserving isometries in 3D, which are achievable in

our 3D space. Thus, we consider SO3(R) = {A ∈M3(R) : ATA = I3,det(A) = 1}.
Exercise 4. Let A ∈ SO3(R). Show that there exists a v ∈ R3 − {0} such that

Av = v.

Proof. We want to show that 1 is an eigenvalue of A. It suffices to show that

det(A− I) = 0.

Since A ∈ SO3(R), det(A − I) = det(A − ATA) = det(A) det(I − AT ) = 1 ×
det(I −A) = det(−I) det(A− I) = (−1)3 det(A− I). Thus det(A− I) = 0.

Note that then A fixes the plane V orthogonal to v, and A restricts to an element

of SO(V ). Therefore, A is a rotation along the v−axis. Because SO3(R) is a group,

it follows that a composition of two rotations in R3 is again a rotation. Think about

how nontrivial it is in geometry.

10



3.4 The isometry of regular solids

We now calculate the groups of orientation-preserving isometries of regular solids.

Let T be a regular tetrahedron, C be a regular cube, O be a regular octahedron,

D be a regular dodecahedron, and I be a regular icosahedron, all centered at the

origin.

Exercise 5. For X being each of the above shapes, Calculate |Aut(X)|. Here,
we only consider orientation-preserving isometries in R3, i.e. we consider Aut(X) <

SO3(R). (Hint: How many ways can you fit a cube of side length 2 in [−1, 1]3.)
Answer. There are 12 ways to fit a regular tetrahedron in a given model. Each

of the 4 faces can placed at the bottom, and each of the remaining 3 faces can be

placed in front of you. Therefore, |Aut(T )| = 12. Similarly, |Aut(C)| = 6 ∗ 4 = 24,

and |Aut(D)| = 12 ∗ 5 = 60.

Exercise 6. What is the group Aut(T )? (*What is Aut(C)?)

Answer. By numbering the 4 vertices of a tetrahedron as 1, 2, 3, 4, we see

that each element g ∈ Aut(T ) permutes the 4 vertices. Also, each g is decided

by where the 4 vertices goes. Thus, we get an inclusion Aut(T ) ↪→ S4. Since

|Aut(T )| = 12 has index 2 in S4, it must be a normal subgroup in S4, which is A4

by our discussion in Section 2.4. We can see that the 8 elements in the conjugate

class [(123)] corresponds to the 8 rotations along each of the 4 vertices, and the 3

elements in the conjugate class [(12)(34)] corresponds to the 3 reflections along the

3 pairs of opposite edges.

What is Aut(C)?

The automorphism of a cube is S4. Label the 4 pairs of opposite vertices as

1,2,3,4. Then Aut(C) permutes the 4 pairs, and each g ∈ Aut(C) affords a per-

mutation ϕg ∈ S4. This way, we get a map ϕ : Aut(C) → S4, and it is a group

homomorphism. For example, if g moves pair i to where pair j originally lies, and h

moves pair j to where pair k originally lies, then ϕg(i) = j, ϕh(j) = k, and h◦g moves

pair i to where pair k originally lies. Then ϕh◦g(i) = k = ϕh ◦ ϕg(i). Therefore,

ϕh◦g = ϕh ◦ ϕg. This shows that ϕ is a group homomorphism.

One may then proceed to show that ϕ is injective or to show that ϕ surjective,
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then conclude that ϕ is isomorphism by comparing the sizes of domain and codomain.

For example, we show that ϕ is injective:

Suppose ϕ(g) = id. Suppose C = [−1, 1]3, then ϕ(g) preserves each of the four

lines (±1,±1, 1)R. Moreover, let v1 = (1, 1, 1), v2 = (−1, 1, 1), v3 = (−1,−1, 1), v4 =
(1,−1, 1). Then each of v1, v2, v3, v4 is an eigenvector of A with eigenvalue 1 or −1.
Any three of the 4 vectors are linearly independent. Let Eλ be the eigenspace of A

with eigenvalue λ. Then e1, ..., e4 ∈ E1 ∪E−1. If two of them lies in E1, and two of

them lies in E−1, then dimE1 ≥ 2,dimE−1 ≥ 2. But E1 ∩ E−1 = 0. Contradiction

arises. Therefore, at least three of the 4 vectors lies in E1 or at least three of the

4 vectors lies in E−1. Any 3 of the 4 vectors generate the whole R3. Therefore,

g = ±I3. Since we require det(g) = 1, g = I3 = id.

Therefore, ϕ : Aut(C) → S4 is injective. Then ϕ is an isomorphism because

|Aut(C)| = |S4| = 24.

The automorphism group Aut(O) ≃ Aut(C), and Aut(D) ∼ Aut(I) ≃ A5. The

last fact can be found at Artin Algebra section 7.4.
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4 More on symmetry

4.1 Isometries explained

Let ϕ be an isometry on Rn, i.e, |ϕ(x)− ϕ(y)| = |x− y| for any x, y ∈ Rn. We will

show that it is an orthogonal linear operator followed by a translation(平移):

Exercise 1. Assume that ϕ is an isometry on Rn fixing the origin. Show that

⟨ϕ(v), ϕ(w)⟩ = ⟨v, w⟩ for all v, w ∈ Rn, where ⟨−,−⟩ is the standard inner product

in Rn.

Proof. Let ϕ : Rn → Rn be an isometry with ϕ(0) = 0. Then |ϕ(x)| = |x| for
any x ∈ Rn. Note that ⟨ϕ(v), ϕ(w)⟩ = (|ϕ(v)|2 + |ϕ(w)|2 − |ϕ(v) − ϕ(w)|2)/2 =

(|v|2 + |w|2 − |v − w|2)/2 = ⟨v, w⟩.

Exercise 2. Let v, w ∈ Rn. Suppose ⟨v, v⟩ = ⟨v, w⟩ = ⟨w,w⟩. Show that v = w.

Proof. ⟨v − w, v − w⟩ = ⟨v, v⟩+ ⟨v, w⟩ − 2⟨v, w⟩ = 0. Therefore, v − w = 0.

Exercise 3. Assume that ϕ is an isometry on Rn fixing the origin. Let v, w ∈ Rn,

show that ϕ(v + w) = ϕ(v) + ϕ(w). Then show that ϕ(λv) = λϕ(v) for any λ ∈ R.
The conclusion of Exercises 1,3 is that such ϕ lies in On(R).

Proof. By Exercise 1, ϕ preserves inner product. Then

⟨ϕ(v + w), ϕ(v + w)⟩ = ⟨v + w, v + w⟩.
⟨ϕ(v+w), ϕ(v)+ϕ(w)⟩ = ⟨ϕ(v+w), ϕ(v)⟩+ ⟨ϕ(v+w), ϕ(w)⟩ = ⟨v+w, v⟩+ ⟨v+

w,w⟩ = ⟨v + w, v + w⟩.
⟨ϕ(v)+ϕ(w), ϕ(v)+ϕ(w)⟩ = ⟨ϕ(v), ϕ(v)⟩+2⟨ϕ(v), ϕ(w)⟩+⟨ϕ(w), ϕ(w)⟩ = ⟨v, v⟩+

2⟨v, w⟩+ ⟨w,w⟩ = ⟨v + w, v + w⟩.
By Exercise 2, we conclude that ϕ(v + w) = ϕ(v) + ϕ(w).

We have two approaches for the last part:

A. Imitating this proof, we conclude that ϕ(λv) = λϕ(v).
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B. By additivity, ϕ : (Rn,+) → (Rn,+) is a group homomorphism. Thus

ϕ(nv) = nϕ(v) for n ∈ Z. Thus ϕ(v/n) = ϕ(v)/n for any n ∈ Z>0. Thus

ϕ(rv) = rϕ(v) for r ∈ Q. Using continuity of ϕ to extend to r ∈ R. (Isometries are

continuous by checking the definition.)

Remark. By Exercise 3, ϕ is linear, and by Exercise 1, ϕ preserves the standard

inner product ⟨v, w⟩ = vTw. If ϕ(v) = Av, then Exercise 1 implies that vTATAw =

vTw for any v, w ∈ Rn. Plug in v = ei, w = ej for each 1 ≤ i, j ≤ n, one sees that

ATA = I. Thus we see that A ∈ On(R) and ϕ ∈ On(R).

Exercise 4. Let ϕ be an isometry on Rn. Show that ϕ = tv ◦ ρ for some

translation tv by vector v ∈ Rn, and some ρ ∈ On(R).

Proof. The translation tv : Rn → Rn is defined by tv(x) = x + v for any x ∈ Rn.

It is clearly an isometry.

Let v = ϕ(0). Then t−v ◦ϕ is an isometry mapping 0 to 0. Thus tv ◦ϕ ∈ On(R).
Let ρ = t−v ◦ ϕ. Then ϕ = tv ◦ ρ.

4.2 Symmetry of higher dimensional objects

The higher dimensional analogues of tetrahedrons are regular simplices. For exam-

ple, note that the convex hull of {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)} ⊆ R4 is

a regular tetrahedron. Let {e1, e2, ..., en+1} be the standard basis of Rn+1. Then the

convex hull of e1, ..., en+1 will be a regular n-simplex. Its full automorphism group

is Sn+1, and its orientation preserving automorphism group is An+1.

The higher dimensional analogues of cubes are n-cubes. An n-cube can be

realized as [−1, 1]n. Its full automorphism group is {±1}n ⋊ Sn. Its orientation

preserving automorphism group is its even part.
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5 Linear Groups

Our next source of examples come from subgroups and quotients of linear groups.

5.1 Some common linear groups

Let k be a field.

GLn(k) := {A ∈Mn(k) | det(A) ̸= 0} is called the general linear group.

SLn(k) := {A ∈Mn(k) | det(A) = 1} is called the special linear group.

On(k) := {A ∈Mn(k) | ATA = AAT = In} is called the orthogonal group.

Tn(k) := {A ∈ GLn(k) | aij = 0 for any i > j} is the group of invertible

upper-triangular matrices. (This is often also referred to as B, a Borel subgroup of

GLn(k).)

Un(k) := {A ∈ Tn(k) | aii = 1 for any i} is the group of unipotent upper-

triangular matrices. (Unipotent means having 1 as the sole eigenvalue. This notation

may collide with that of unitary groups, so we will call the latter U(n,C) when

necessary.)

Dn(k) := {diag(a1, ..., an) | a1, ..., an ∈ k×} is the group of invertible diagonal

matrices. (This is often also referred to as T , to indicate that it is a torus, i.e.,

isomorphic to (k×)n. Unfortunately this collides with our Tn(k) above. We will

stick to our notation.)

PGLn(k) := GLn(k)/k
×, where a ∈ k× is identified with the scalar matrix

aIn = diag(a, a, ..., a).

5.2 Properties of GLn(k)

Exercise 1. Suppose |k| = q <∞. What is the order of |GLn(k)|?
Answer. For A ∈Mn(k), write A = (A1|A2|...|An), where Ai is the i-th column

of A. Then A ∈ GLn(k) ⇐⇒ A1, ..., An are linearly independent. A1 can be chosen

15



arbitrarily from kn − {0}, which has cardinality qn − 1. After selecting A1, ..., Ai,

Ai+1 should lie in kn − ⟨A1, ..., Ai⟩, which has cardinality qn − qi. Multiply these

numbers up, we get |GLn(k)| = (qn − 1)(qn − q)...(qn − qn−1) =
n−1∏
i=0

(qn − qi).

Exercise 2. Suppose |k| = q < ∞. What are the orders of |SLn(k)| and
|PGLn(k)|?

Answer. We have two short exact sequences:

1 SLn(k) GLn(k) k× 1

1 k× GLn(k) PGLn(k) 1.

det

Therefore, |SLn(k)| = |PGLn(k)| = |GLn(k)|/|k×| = 1
q−1

n−1∏
i=0

(qn − qi).

Remark. In general, SLn(k) may not be isomorphic to PGLn(k). The natural map

SLn(k) → PGLn(k) has the same kernel and cokernel as the map k× → k× by

a 7→ an.

Exercise 3. Show that Z(GLn(k)) = k×. (More precisely, Z(GLn(k)) = k×In.)

Proof. We may assume that n ≥ 2. Suppose A ∈ Z(GLn(k)). Let eij be the

matrix with ij-entry 1, and other entries 0. Then for i ̸= j, In+eij ∈ GLn(k). Then

A(In + eij) = (In + eij)A. Therefore, Aeij = eijA.

Note that Aeij = a1ie1j + ...anienj , and eijA = aj1ei1 + ... + ajnein. Therefore,

both sides only have eij term, and ai′i = 0 if i′ ̸= i, aj′j = 0 if j′ ̸= j, and aii = ajj .

As (i, j) runs through unequal pairs of {1, ..., n}, we see that aij = 0 for any i ̸= j,

and aii = ajj for any i, j. Thus A = diag(a, a, ..., a) for a = A11 ∈ k× − {0}.
Clearly, scalar matrices commutes with any other matrix. Thus, Z(GLn(k)) =

k×In.

Remark. Note that the proof above applies also to SLn(k), and will show that

Z(SLn(k)) = µn(k)In = {diag(a, a, ..., a) | a ∈ k×, an = 1}.

Fact. For n ≥ 3 or when |k| ≥ 3, [GLn(k),GLn(k)] = SLn(k). For n ≥ 3 or when

|k| ≥ 4, [SLn(k),SLn(k)] = SLn(k).

16



MATH3030 Tutorial 6

J. SHEN

19 October, 2022

6 Generators and Relations

We study the concepts of generators and relations in detail and solve some questions

in previous homework sets. We refer to Artin §7.9-7.10.

6.1 Free groups

Let A be a set. The free group F (A) on A consists of all finite length reduced words

with letters in {a : a ∈ A} ∪ {a−1 : a−1 ∈ A}, where empty word ( ) is allowed, and

multiplication is given by juxtaposition and reduction.

Let W (A) be the set of all words with letters in {a : a ∈ A} ∪ {a−1 : a−1 ∈ A}.
Reduction R means cancelling out consecutive terms aa−1 or a−1a in a word w ∈
W (A) as far as possible. Two words w,w′ ∈W (A) are equivalent if and only if they

have the same reduced form: w ∼ w′ ⇐⇒ R(w) = R(w′). Then F (A) may also be

defined as W (A)/ ∼.
The most important property for free groups is the mapping property:

Proposition 6.1. Let F be the free group on a set A = {a, b, ...}, and let G be a

group. Any map of sets f : A → G extends in a unique way to a group homomor-

phism ϕ : F → G, such that ϕ(a) = f(a) for any a ∈ A.

6.2 Generators

Let G be a group, and let S = {x1, ..., xn} be a subgroup of G. Recall that the

subgroup of G generated by S is the intersection of all subgroups of G that

contains H. It also has the description {g1...gl : each gi ∈ S ∪ S−1}. That is,

⟨S⟩ =
⋂

S⊆H≤G

H = {g1...gl : each gi ∈ S ∪ S−1}.
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The inclusion S ↪→ G induces a group homomorphism ϕ : F (S)→ G via propo-

sition 6.1. The image of ϕ is exactly ⟨S⟩. Therefore, G is generated by S if and only

if ϕ is surjective.

6.3 Relations

Let R be a subset of a group G. The intersection N of all normal subgroups of

G contains R is again a normal subgroup of G, and is called the normal subgroup

generated by R. That is,

N =
⋂

R⊆H◁G

H.

Elements of N may be described as follows (Artin Lemma 7.10.3):

(a) An element of G is in N if it can be obtained from the elements of R using

a finite sequence of the operations of multiplication, inversion, and conjugation.

(b) Let R′ be the set consisting of elements r and r−1 with r in R. An element

of G is in N if it can be written as a product y1...yr of some arbitrary length, where

each yν is a conjugate of an element of R′.
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Let F (S) be the free group on a set S = {x1, ..., xn}, and let R = {r1, ..., rk} ⊆
F (S). The group generated by S with relations r1 = ... = rk = 1 is the quotient

groupG = F (S)/N(R), whereN(R) is the normal subgroup of F (S) generated by R.

This group is often denoted by ⟨x1, ..., xn|r1, ..., rk⟩ or ⟨x1, ..., xn|r1 = ... = rk = 1⟩.

Proposition 6.2. Let S = {x1, ..., xn} be a subset of a group G, and let R =

{r1, ..., rn} be a set of relations of G among the elements of S. Let F (S) be the free

group on S, and N(R) the normal subgroup of F (S) generated by R. Then there is

a canonical homomorphism ψ : F (S)/N(R) → G that sends xi to xi. Moreover, ψ

is surjective if and only if S generates G.

Exercise 1. When |A| > 1, show that the free group F (A) is nonabelian.

Proof. There exists a group G that is nonabelian (e.g. S3). Then there exists

g, h ∈ G such that gh ̸= hg. Let x, y be two distinct elements in A. Define a function

f : A→ G by f(x) = g, f(y) = h, and f(z) = eG for any z ̸= x, y. Let ϕ : F (A)→ G

be the group homomorphism corresponding to f . Then ϕ(x) = a, ϕ(y) = b. If

xy = yx, then ab = ϕ(xy) = ϕ(yx) = ba. Contradiction arises. Then xy ̸= yx, so

F (A) cannot be abelian.
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Exercise 2. Show that ⟨x, y|xn = y2 = xyxy = 1⟩ has at most 2n elements,

and thus show that it is isomorphic to Dn.

Proof. Any element g inG = ⟨x, y|xn = y2 = xyxy = 1⟩ has the form xi1yj1 ...xiryjr

for some r ≥ 0, i1, ..., ir, j1, ..., jr ∈ Z. Using xn = y2 = 1, one can assume each

i1, ..., ir ∈ {0, 1, ..., n − 1}, and each j1, ..., jr ∈ {0, 1}. Since xyxy = 1, yx = x−1y.

Then one can move y’s to the end of the expression. Then g = xiyj for some

i ∈ Z, j ∈ Z. Use xn = y2 = 1 again to reduce i to {0, 1, ..., n − 1} and j to {0, 1}.
Then |G| ≤ 2n.

There exists elements r, s in Dn such that rn = s2 = rsrs = 1, which generate

Dn. Define the map ϕ : ⟨x, y⟩ → D such that ϕ(x) = r, ϕ(y) = s. Then ϕ is

surjective, and factors through the group G. Then we get a map ψ : G→ Dn, which

is surjective. But |G| ≤ 2n, |Dn| ≥ 2n. Then ψ is bijective, so G ≃ Dn.

Exercise 3. Let a, b be distinct elements of order 2 in a group G. Suppose that

ab has finite order n ≥ 3. Prove that the subgroup ⟨a, b⟩ generated by a and b is

isomorphic to the dihedral group Dn (which has 2n elements).

Proof. The subgroup ⟨a, b⟩ = ⟨a, ab⟩ satisifies the relation: a2 = e, (ab)n = e, b2 =

(a−1ab)2 = e. Hence we have a surjective group homomorphism ϕ : Dn = ⟨r, s |
rn = s2 = rsrs = 1⟩ → ⟨a, b⟩ with ϕ(s) = a, ϕ(r) = ab.

Note that ⟨ab⟩ < ⟨a, ab⟩. Because ord(ab) ≥ 3, ab ̸= (ab)−1. Then ab ̸= ba,

so ⟨a, b⟩ is not abelian. Therefore, [⟨a, b⟩ : ⟨ab⟩] ≥ 2. Then |⟨a, b⟩| ≥ 2n. Since

ϕ : Dn → ⟨a, ab⟩ is surjective, it must be that |⟨a, b⟩| = 2n, and that ϕ is bijective.

Therefore, ⟨a, b⟩ ≃ Dn.

Exercise 4. Prove that every finite group is finitely presented.

Proof. Let X = {g1, ..., gn} be the set of all elements of G, then we can define the

surjective homomorphism ϕ : F (X)→ G which maps all words to the corresponding

words in G. Therefore, G is finitely generated. The relations of G are finitely

generated. It suffices to use all the gigjg
−1
ϕ(i,j) = e kind of relation, where ϕ(i, j)

is such that gigj = gϕ(i,j). The number of generating relations used is n2.
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7 Semidirect Product

7.1 Definition

Let G,H be two groups, and let θ : H → Aut(G) be a group homomorphism.

Denote θh = θ(h) ∈ Aut(G). We could define the semidirect product of G and H

by θ as:

G⋊θ H := (G×H, ·θ),

where (g1, h1) ·θ (g2, h2) = (g1θh1(g2), h1h2).

Remark. When θ is trivial, this reduces to the usual direct product.

Exercise 1. Check that G⋊H = (G×H, ·θ) is a group.

Proof. We write · for ·θ in the following. We will frequently use θhh′ = θhθh′ and

θ−1
h = θh−1 . To see this, recall that θ is a homomorphism from H to Aut(G) and

that θh := θ(h)

(Identity) Let g ∈ G, h ∈ H. Then (g, h) · (eG, eH) = (gθh(eG), heH) = (g, h),

and (eG, eH) · (g, h) = (eGθeH (g), eHh) = (g, h). Therefore, (eG, eH) is an identity

in G⋊H.

(Inverse) First, (g, h)·(θh−1(g−1), h−1) = (gθh(θh−1(g−1)), hh−1) = (gθhθh−1(g−1), e) =

(gθe(g
−1), e) = (e, e). Second, (θh−1(g−1), h−1) · (g, h) = θh−1(g)θh−1(g−1), h−1h) =

(θh−1(g−1g), e). Then (θh−1(g−1), h−1) is the inverse to (g, h).

(Associativity) Take any g, g′, g′′ ∈ G, h, h′, h′′ ∈ H. Then

((g, h) · (g′, h′)) · (g′′, h′′) = (gθh(g
′), hh′) · (g′′, h′′) = (gθh(g

′)θhh′(g′′), hh′h′′), and

(g, h) · ((g′, h′) · (g′′, h′′)) = (g, h) · (g′θh′(g′′), h′h′′) = (gθh(g
′θh′(g′′)), hh′h′′) =

(gθh(g
′)θhh′(g′′), hh′h′′). The two expressions agree. Thus the associativity holds.
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7.2 Internal semidirect product

Note that G⋊H contains a copy of G: G′ := {(g, e) : g ∈ G} ≃ G, and a copy of H:

H ′ := {(e, h) : h ∈ H} ≃ H. Note that G′, H ′ satisfies G′H ′ = G⋊H,G′∩H ′ = {e},
and G′ ◁ G ⋊ H. This is much comparable to the case of direct product. We say

that G is an (internal) semidirect product of two normal subgroups N and H if

NH = G, N ∩H = {e}, and N ◁G. This is justified by the following:

Proposition 7.1. Let G be a group. Let N ◁ G,H < G be such that NH = G

and N ∩ H = {e}. Let θ : H → Aut(N) be the group homomorphism that that

θh(n) = hnh−1. Then N ⋊θ H ≃ G.

Proof. Note that θh = ih|N , the conjugation by h restricted to N . For h, h′ ∈ H,

ih|N ◦ ih′ |N = (ih ◦ ih′)|N = ihh′ |N . Then θhh′ = θh ◦ θh′ . Hence, θ : H → Aut(N) is

a group homomorphism.

Define ϕ : N ⋊θ H → G by ϕ(n, h) = nh. Then NH = G implies that ϕ is sur-

jective. For n, n′ ∈ N , h, h′ ∈ H, (n, h) ·θ (n′, h′) = (nθh(n
′), hh′) = (nhn′h−1, hh′).

Then ϕ((n, h)·θ(n′, h′)) = ϕ(nhn′h−1, hh′) = nhn′h−1hh′ = nhn′h′ = ϕ(n, h)ϕ(n′, h′).

Then ϕ is a group homomorphism. The condition N ∩ H = {e} implies that

ker(ϕ) = {e}. Then ϕ is injective.

It follows that ϕ : N ⋊θ H → G is an isomorphism.

Remark. If further H ◁ G, then N × H ≃ G. That is, G is an internal direct

product of N and H.
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7.3 Example: Groups of order pq

Let p, q be primes, with p < q. Let G be a group of order pq. Then there exists

a subgroup P < G of order p, and a unique subgroup Q < G of order q (e.g. use

Sylow III). Therefore, Q◁G. Then G ≃ Q⋊θ P , for some θ : P → Aut(Q).

Since P ≃ Zp, Q ≃ Zq, and Aut(Q) ≃ Zq−1, the number of group homomorphism

from P to Aut(Q) is 1 if p ∤ q, and is p if p | q. Then the only group of order pq is

Q×P ≃ Zpq if p ∤ q− 1. When p | q− 1, we illustrate the situation by taking p = 3,

q = 7:

Take P = ⟨h|h3 = 1⟩, Q = ⟨g|g7 = 1⟩. Then Aut(Q) ≃ Z×
7 ≃ Z6: Elements

of End(Q) are αi : gk 7→ gik for each k. Then i ∈ Z7, and αi ∈ Aut(Q) exactly

when i ∈ Z×
7 . The map i 7→ αi gives the isomorphism Z7 ≃ Aut(Q). We know from

number theory or from this course (using FTFGAG) that Z×
7 is cyclic.

One generator of the cyclic group Z×
7 is 3, and the corresponding generator of

Aut(Q) is α3 : gk 7→ g3k. A homomorphism θ : P → Aut(Q) shall map x to an

order 1 or 3 element in Aut(Q), and they are α1, α2 and α4. Denote by θi the

homomorphism with θi(h) = αi, where i = 1, 2, 4.

In G = Q ⋊θi P , we write g for (g, e), and h for (e, h) as usual. Then hg =

θh(g)h = gih. The group G satisfies g7 = h3 = 1, and hg = gih. Let G′ =

⟨g, h|g7 = h3 = gihg−1h−1 = 1⟩. Then there is a surjection G′ ↠ G. But |G′| ≤ 21,

and |G| = 21, therefore, that surjection must be a bijection. That is, G has the

presentation ⟨g, h|g7 = h3 = gihg−1h−1 = 1⟩.
When i = 1, we get the usual cyclic group Z7 × Z3 ≃ Z21.

The other two groups Q ⋊θ2 P and Q ⋊θ4 P are in fact isomorphic. Note that

(θ2)h(g) = g2, and (θ4)h(g) = g4. Then (θ2)h2(g) = g4. Then the h2 in Q ⋊θ2 P

corresponds to the h in Q⋊θ4 P . One may verify that ⟨g, h|g7 = h3 = g2hg−1h−1 =

1⟩ → ⟨g, h|g7 = h3 = g2hg−1h−1 = 1⟩ by g 7→ g, h 7→ h−1 extends to a group

isomorphism.

Therefore, there are two isomorphism class of groups of order 21. This holds

in general for any p, q with p|q − 1. When p = 2, and q is an odd prime, the two

isomorphism classes are C2p and Dp.
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8 Basic theorems of ring theory

8.1 Properties of ring homomorphisms

Proposition 8.1 (Fraleigh 8th ed. thm 30.11). Let R be a ring (with 1, not assuming
commutativity). Let ϕ : R→ R′ be a ring homomorphism. Then

1. ϕ(0) = 0

2. For any a ∈ R, ϕ(−a) = −ϕ(a).

3. If S is a subring of R, then ϕ(S) is a subring of R′

4. If S′ is a subring of R′, then ϕ−1(S′) is a subring of R.

5. If N is an ideal of R, then ϕ(N) is an ideal of ϕ(R).

6. If N ′ is an ideal of either R′ or ϕ(R), then ϕ−1(N ′) is an ideal of R. (Ideals
mean two-sided ideals.)

Proof. Property 1 and 2 follows from ϕ : (R,+) → (R′,+′) being a group homo-

morphism.

3. Since S is a subring of R, it is closed under −,×, and 1R ∈ S. Then for

x, y ∈ ϕ(S), there exist a, b ∈ S such that ϕ(a) = x, ϕ(b) = y. Then a−b, ab ∈ S, and
so x− y = ϕ(a− b) ∈ ϕ(S), and xy = ϕ(ab) ∈ ϕ(S). Moreover, 1R′ = ϕ(1R) ∈ ϕ(S).
It follows that ϕ(S) is a subring of R′.

4. Let S′ be a subring of R′. Then it is closed under −,×, and 1R′ ∈ S′. For

a, b ∈ ϕ−1(S′), ϕ(a), ϕ(b) ∈ S′. Then ϕ(a − b) = ϕ(a) − ϕ(b) ∈ S′ and ϕ(ab) =

ϕ(a)ϕ(b) ∈ S′. Since ϕ(1R) = 1R′ ∈ S′, 1R ∈ ϕ−1(S′). Therefore, ϕ−1(S′) is a

subring of R.

5. Since N is an ideal of R, it is an additive subgroup of R, and for r ∈ R,

n ∈ N , rn, nr ∈ N . Then ϕ(N) is an additive subgroup of ϕ(R) and for x ∈ ϕ(R),
y ∈ ϕ(N), there exists r ∈ R,n ∈ N such that ϕ(r) = x, ϕ(n) = y. Then xy =
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ϕ(r)ϕ(n) = ϕ(rn) ∈ ϕ(N), and yx = ϕ(n)ϕ(r) = ϕ(nr) ∈ ϕ(N). Then, ϕ(N) is an

ideal of ϕ(R).

6. If N ′ is an ideal of R′, then it is also an ideal of ϕ(R). So we suppose N ′ is an

ideal of ϕ(R). Then ϕ−1(N ′) is an additive subgroup of R. Let r ∈ R,n ∈ ϕ−1(N ′),

ϕ(r) ∈ ϕ(R) and ϕ(n) ∈ N ′. Then ϕ(rn) = ϕ(r)ϕ(n) ∈ N ′, ϕ(nr) = ϕ(n)ϕ(r) ∈ N ′.

Then rn, nr ∈ ϕ−1(N ′). It follows that ϕ−1(N ′) is an ideal of R.

8.2 First isomorphism theorem

Proposition 8.2 (First isomorphism theorem, Artin 11.4.2, Fraleigh 7th 26.17, 8th

30.17). Let ϕ : R → R′ be a ring homomorphism. Then ϕ−1(0) ⊆ R is an ideal.

Moreover, ϕ induces ϕ : R/ϕ−1(0) → ϕ(R), which is an isomorphism and which

satisfies the following commutative diagram:

More generally, given ideal I ⊆ ϕ−1(0), there exists a unique ϕ : R/I → R′

satisfying ϕ = ϕ ◦ π, where π : R→ R/I is the natural surjection r 7→ r + I.

Proof. Let ϕ : R → R′ be a ring homomorphism. That ϕ−1(0) ⊆ R is an ideal

follows from part 6 of the previous proposition. By the group version of the 1st

isomorphism theorem, ϕ induces ϕ : R/ϕ−1(0) → ϕ(R), which is an additive group

isomorphism, such that ϕ(r) = ϕ(r) for each r ∈ R. It remains to show that ϕ is

a ring homomorphism. Clearly, ϕ(1R) = ϕ(1R) = 1R′ . For r, r′ ∈ R, ϕ(r · r′) =

ϕ(rr′) = ϕ(rr′) = ϕ(r)ϕ(r′) = ϕ(r)ϕ(r′). Then ϕ is a ring isomorphism.

The second statement is proved by defining ϕ(r) = ϕ(r) and verifying that ϕ is

well-defined and is a ring homomorphism satisfying ϕ = ϕ ◦ π.

8.3 Correspondence theorem

The following theorem is called the correspondence theorem, or the fourth isomor-

phism theorem, and is quite useful in identifying rings.

Proposition 8.3 (Artin 11.4.3). Let ϕ : R → R′ be a surjective homomorphism

with kernel K. Then there is an order-preserving bijection between

{Ideals of R containing K} ←→ {Ideals of R′}, given by

α : I 7→ ϕ(I), and β : ϕ−1(I ′)← [ I ′

Moreover, R/I ≃ R′/I ′ if I ↔ I ′.
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Proof. Let ϕ : R→ R′ be a surjective homomorphism with kernel K. Let S ={I:
I is an ideal of R containing K}, and S′ ={I ′: I ′ is an ideal of R′}. For I ∈ S, ϕ(I)
is an ideal of R′ by property 5 in 8.1. Then α : I 7→ ϕ(I) defines a map from S to S′.

For I ′ ∈ S′, ϕ−1(I ′) is an ideal of R by property 6 in 8.1. Clearly K ⊆ ϕ−1(I ′). Then

β defines a map from S′ to S. For I1 ⊆ I2, I1, I2 ∈ S, α(I1) = ϕ(I1) ⊆ ϕ(I2) = α(I2).

Therefore, α is order-preserving. Similarly, β is also order-preserving.

For I ∈ S, β ◦ α(I) = ϕ−1(ϕ(I)) ⊇ I. For a ∈ ϕ−1(ϕ(I)), ϕ(a) ∈ ϕ(I). Then

there exists some b ∈ I such that ϕ(a) = ϕ(b). Then ϕ(a−b) = 0 and a−b ∈ K ⊆ I.
Then a = a−b+b ∈ I. Therefore, β ◦α(I) = ϕ−1(ϕ(I)) = I. Since I was arbitrarily

chosen, β ◦ α = idS .

For I ′ ∈ S′, α◦β(I ′) = ϕ(ϕ−1(I ′)) = I ′∩ϕ(R) = I ′∩R′ = I ′ since ϕ is surjective.

Then α ◦ β = idS′ .

Therefore, α and β defines a correspondence (i.e. bijection) between S and S′.

For I ∈ S, let I ′ = α(I). Then the natural projection π : R′ → R′/I ′ is

a surjective ring homomorphism. Since ϕ is also a surjective homomorphism, so

is ψ := π ◦ ϕ : R → R′/I ′. Let r ∈ R. Then r ∈ ker(ψ) ⇐⇒ π(ϕ(r)) =

0 ⇐⇒ ϕ(r) ∈ I ′ ⇐⇒ r ∈ β(I ′) = βα(I) = I. Then ker(ψ) = I. Since ψ is a

surjective ring homomorphism, ψ induces a ring isomorphism ψ : R/I → R′/I ′ by

r 7→ ψ(r) = π ◦ ϕ(r) = ϕ(r).

Exercise 1. (Artin Q11.4.3) Identify the following rings: (a) Z[x]/(x2−3, 2x+

4), (b) Z[i]/(2+i), (c) Z[x]/(6, 2x−1), (d)Z[x]/(2x2−4, 4x−5), (e) Z[x]/(x2+3, 5).

Our strategy is to use the correspondence theorem, which states that if ϕ : R→
R′ is surjective, and I ⊃ ker(ϕ), then R/I ≃ R′/ϕ(I). We will often choose ker(ϕ)

to be (x− r) or (m) for some r,m ∈ Z.
There is a useful property of a surjective homomorphism ϕ: ϕ((x1, x2, ..., xn)) =

(ϕ(x1), ϕ(x2), ..., ϕ(xn)). The proof is straightforward, and we will use this without

further explanation.

Answer. (a) Let R = Z[x], I = (x2 − 3, 2x+ 4). Then 2x2 + 4x ∈ I, 4x+ 6 =

2x2+4x−2(x2−3) ∈ I, and 2 = 2(2x+4)−(4x−6) ∈ I. Let R′ = R/(2) = F2[x]. Let

ϕ : R→ R′ be the natural projection. Then ϕ(I) = (ϕ(x2−3), ϕ(2x+4)) = (x2+1),
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and I ⊇ ker(ϕ) = (2). Then I corresponds to ϕ(I) as in the correspondence theorem,

so R/I ≃ R′/ϕ(I) = F2[x]/(x
2 + 1) = F2[x]/(x+ 1)2.

(b) Let R = Z[x]. The evaluation homomorphism ϕ : Z[x]→ Z[i] with ϕ(x) = i

is surjective with ker(ϕ) = (x2 + 1). Let I = (x2 + 1, 2 + x), then I ⊇ ker(ϕ) and

ϕ(I) = (0, 2 + i). Then by the correspondence theorem, R/I ≃ Z[i]/(2 + i).

Let ψ : R→ Z be the evaluation map such that ϕ(x) = −2. Then ψ is surjective,

ker(ψ) = (x+ 2) ⊆ I, and ϕ(I) = ((−2)2 + 1,−2 + 2) = (5). By the correspondence

theorem, R/I ≃ Z/(5) ≃ F5.

(c) Let R = Z[x], and I = (6, 2x − 1). Then 3 = 6x − 3(2x − 1) ∈ I. Let

R′ = F3[x] and ϕ : R → R′ be the natural projection. Then ker(ϕ) = (3) ⊆ I,

and ϕ(I) = (0,−x − 1) = (x + 1). Then by the correspondence theorem, R/I ≃
F3[x]/(x+ 1) ≃ F3.

(d) Let R = Z[x], and I = (2x2 − 4, 4x − 5). Then 5x − 8 = 2(2x2 − 4) −
x(4x − 5) ∈ I. Then x − 3 = 5x − 8 − (4x − 5) ∈ I. Let ϕ : R → Z be the

evaluation map with ϕ(x) = 3. Then ker(ϕ) = (x − 3) ⊆ I, ϕ is surjective, and

ϕ(I) = (2 · 32 − 4, 4 · 3 − 5) = (14, 7) = (7). By the correspondence theorem,

R/I ≃ Z/(7) ≃ F7.

(e) Let R = Z[x], I = (x2+3, 5), and let ϕ : R→ F5[x] be the natural projection.

Then ker(ϕ) = (5) ⊆ I, and ϕ(I) = (x2 + 3, 0). By the correspondence theorem,

Z[x]/I ≃ F5[x]/(x
2 + 3).

Note that x2 + 3 is irreducible, F5[x]/(x
2 + 3) is a field of 25 elements, that is

Z[x]/I ≃ F25.

Exercise 2. (Artin Q11.4.4) Are the rings Z[x]/(x2 + 7) and Z[x]/(2x2 + 7)

isomorphic?

Proof. No. The two rings are not isomorphic. We give a proof.

Suppose there is a ring isomorphism ϕ : Z[x]/(2x2 + 7) → Z[x]/(x2 + 7). Then

ϕ(1) = 1, and ϕ(x) = ax + b for some a, b ∈ Z. Then 0 = ϕ(2x2 + 7) = 2(ax +

b)2 + 7 = 2a2x2 + 4abx + 2b2 + 7 = 4abx + 2b2 + 7 − 14a2 in Z[x]/(x2 + 7). Then

4ab = 2b2 + 7 − 14a2 = 0. Since a, b ∈ Z, 14a2 = 2b2 + 7 > 0. Then a ̸= 0. Then

b = 0 by 4ab = 0, and so 7 = 14a2. There is no solution where a ∈ Z. Contradiction
arises. Therefore, the two rings are not isomorphic.
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9 Factorization in Z[i]

9.1 Factorization, PID and UFD

We record here some relations among prime elements, irreducible element, prime

ideals, and maximal ideals.

Proposition 9.1. Let R be an integral domain. Let r ∈ R,

1. r is irreducible. 2. r is a prime element.

4. (r) is a maximal ideal. 3. (r) is a prime ideal.

When R is a PID, 1 =⇒ 4, and so the four statements 1-4 are all equivalent.

An integral domain R is called a unique factorization domain (UFD) if

(U1) Any element in R− (R× ∪ {0}) is a product of irreducible elements.

(U2) The factorization is unique up to associates and reordering.

Proposition 9.2. (a) Condition (U1) is equivalent to ACCPI: If (a1) ⊆ (a2) ⊆
... ⊆ (an) ⊆ ..., then there exists some n such that (an) = (an+1) = ...

(b) Under (U1), (U2) is equivalent to 1 =⇒ 2 in proposition 9.2, that is, any

irreducible element is a prime.

(c) Any PID is a UFD.
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9.2 Euclidean domains, Gaussian integers

An integral domain R is called an Euclidean domain (ED) if there is a size function

σ : R − {0} → Z≥0 on R such that the division with remainder is possible in the

following sense:

(ED1) Let a, b ∈ R with b ̸= 0, there exist q, r ∈ R such that a = bq + r and either

r = 0 or σ(r) < σ(b).

(ED2) When a ̸= 0, σ(ab) ≥ σ(b).
Artin’s definition does not require (ED2), which is included for discussion of

units.

Proposition 9.3. Any ED is a PID.

Proof. Let R be an ED, with size function σ. Let I be an ideal in R. If I = 0,

then I is generated by 0. If I ̸= 0, σ(I − {0}) is a nonempty subset of Z≥0, hence

contains a minimal element σ(b), where b ∈ I. Then (b) ⊆ I. Conversely, let a ∈ I,
then a = bq + r for some q, r ∈ R with r = 0 or σ(r) < σ(b). But note that

r = a − bq ∈ I, so σ(r) < σ(b) cannot happen when r ̸= 0. Therefore r = 0, so

a = bq ∈ (b). Therefore, I = (b). It follows that R is a PID.

Examples. Z is an ED with σ(n) = |n|.
F[x] is an ED with σ(f) = deg(f).

Recall the definition the ring of Gaussian integers Z[i] := {a+ bi | a, b ∈ Z}.

Proposition 9.4. Z[i] is an ED with σ(a) = |a|2 for any a ∈ Z[i].

Proof. Define σ(a) = |a|2 for any a ∈ Z[i]. Then σ(ab) = σ(a)σ(b), and σ(a) ≥ 1

for a ̸= 0. Then, ED2 is clear.

Let a, b ∈ Z[i] with b ̸= 0. Then a
b ∈ C. There exists some m,n ∈ Z such that

Re(ab ) ∈ [m− 1
2 ,m+ 1

2 ] and Im(ab ) ∈ [n− 1
2 , n+

1
2 ]. Then |

a
b − (m+ni)| ≤ |12 +

i
2 | =√

2
2 < 1. Let q = m + ni, and r = a − bq. Then |ab − q| < 1, so |r| < |b|. Then

σ(r) < σ(b). We have proved ED1.

Therefore, Z[i] is an ED.

Remark. We often write N(z) = σ(z) = |z|2, and say that N is a norm function,

because N is multiplicative, and agrees with the norm function in field theory.
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9.3 Factorization in Z[i]

We characterize units and prime (irreducible) elements in Z[i].

Proposition 9.5. (a) Units in Z[i] are ±1,±i.

(b) If a ∈ Z[i] is a prime element, then either a is associate to an integer prime, or

aa is an integer prime.

(c) Let p be an integer prime, then either p remains a prime in Z[i], or p factors

into ππ for some prime π ∈ Z[i].

(d) An integer prime p remains a prime in Z[i] exactly when p ≡ 3 (mod 4), and p

factors in Z[i] exactly when p = 2 or p ≡ 1 (mod 4).

Therefore, up to associates, we can list all primes in Z[i] as {3, 7, 11, 19, ...} ∪
{1 + i, 2 + i, 2− i, 3 + 2i, 3− 2i, ...}.

Proof.

(a) Let u be a unit in Z[i], then uv = 1 for some v ∈ Z[i]. Then 1 = N(uv) =

N(u)N(v). Since N(u), N(v) ∈ Z≥0, we have N(u) = 1. Conversely, if u ∈ Z[i]
satisfies N(u) = 1, then uu = 1, and u ∈ Z[i]. Then u is a unit in Z[i].

It follows that u = a+ bi ∈ Z[i] is a unit if and only if N(u) = a2 + b2 = 1, and

this holds exactly when (a, b) = (1, 0), (−1, 0), (0, 1), (0,−1), that is u = ±1 of

±i.

(b) Let a be a prime in Z[i]. Then so is a. Factorize aa in Z as aa = p1...pr. Then

a | p1...pr in Z[i], and since a is a prime in Z[i], a | pj for some j, say, a | p1.
Then aa | p21. Since a is not a unit, aa > 1. Then aa = p1 or p21. If aa = p21, then

p1 must be a prime associate to a, in view of the unique factorization of Z[i].
Therefore, either a is associate to an integer prime, or aa is an integer prime.

(c) Factorize p into irreducible elements in Z[i]: p = π1...πr. Then p2 = N(p) =

N(π1)...N(πr). In view of unique factorization in Z, r ≤ 2. When r = 1, p

remains a prime in Z[i]. When r = 2, p2 = N(π1)N(π2), so p = N(π1) = N(π2).

Then p = ππ.

30



(d) p is not a prime in Z[i] ⇐⇒ Z[i]/(p) is not an integral domain

⇐⇒ Z[x]/(x2 + 1, p) is not an integral domain

⇐⇒ Fp[x]/(x
2 + 1) is not an integral domain

⇐⇒ x2 + 1 is not irreducible (i.e. has a root) in Fp[x].

⇐⇒ p = 2 or there is an element of order 4 in Fp[x].

⇐⇒ p = 2 or p ≡ 1 (mod 4).

Corollary. An integer prime p can be written as a2 + b2 for some a, b ∈ Z exactly

when p = 2 or p ≡ 1 (mod 4).

Proof. Combine (c) and (d) of Prop 9.5. By (d), p is not irreducible in Z[i] exactly
when p = 2 or p ≡ 1 (mod 4). By (c), p is irreducible if and only if p = N(π) = a2+b2

for some integers a, b ∈ Z.
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10 Product rings and the Chinese Remainder theorem

10.1 Definition and characterization of product rings

10.1.1 Product rings

Let R,R′ be rings. Then R × R′ := {(r, r′) : r ∈ R, r′ ∈ R′} is a ring with

component-wise addition and multiplication. The unity is (1R, 1R′).

We have two projections: π1 : R×R′ → R by π1(r, r
′) = r, and π2 : R×R′ → R′

by π2(r, r
′) = r′. The two maps preserves identity, addition, and multiplication.

The kernels are 0×R′ and R× 0 respectively.

In other word, we have two short exact sequences:

0 0×R′ R×R′ R 0.

0 R× 0 R×R′ R′ 0.

π1

π2

Note that R × 0 is a ring with unity e1 = (1, 0), and it is isomorphic to R. But

it is not a subring of R × R′ because the unity of the two rings are not the same.

Similar things hold for 0×R′, which has unity e2 = (0, 1).

Note that e21 = e1. We say that an element with this property as e1 is idempo-

tent.

10.1.2 A characterization of product rings

In fact, in the commutative case, product rings are characterized by idempotent

elements:

Proposition 10.1. Let S be a commutative ring. Let e ∈ S be an idempotent

element, that is, e2 = e.

1. The element e′ = 1− e is also idempotent, and ee′ = e′e = 0.
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2. eS and e′S are rings with identity elements e and e′. Moreover, me : S → eS

and me′ : S → e′S are ring homomorphisms, where ma(s) = as for a, s ∈ S.

3. S ≃ eS × e′S.

Proof.

1. In the commutative ring R, since e2 = e, ee′ = e′e = (1− e)e = e− e2 = 0 and

(e′)2 = e′(1− e) = e′ − e′e = e′.

2. Note that me : S → S is additive: me(s + s′) = e(s + s′) = es + es′ =

me(s) +me(s
′) for any s, s′ ∈ S, so its image eS is an additive subgroup of

S. Let es, es′ ∈ eS with s, s′ ∈ S. Then eses′ = e(ses′) ∈ eS. Therefore, eS

is closed under multiplication. Moreover, for any s ∈ S, e(es) = e2s = es.

Then e is an identity element in eS. It follows that eS is a ring with identity

element e.

Note that me(1) = e, and for any s, s′ ∈ S, me(s + s′) = me(s) + me(s
′)

and me(s)me(s
′) = eses′ = e2ss′ = ess′ = me(ss

′). Therefore, me is a ring

homomorphism.

The statements for e′ are analogous.

3. Define ϕ : S → eS×e′S by ϕ(s) = (es, e′s) = (me(s),me′(s)). By 2, ϕ is a ring

homomorphism. Let s ∈ ker(ϕ), then es = e′s = 0. Then s = (e + e′)s = 0.

Therefore ϕ is injective. Let (a, b) ∈ eS× e′S. Write (a, b) = (es1, e
′s2), where

s1, s2 ∈ S. Then ϕ(a+ b) = (ea+eb, e′a+e′b) = (ees1+ee
′s2, ee

′s1+e
′e′s2) =

(es1, e
′s2) = (a, b). Therefore, ϕ is bijective. Thus, ϕ : S ≃ eS × e′S.

10.2 The Chinese remainder theorem

Theorem 10.2. Let I, J ⊆ R be ideals, such that I + J = R. Then

1. I ∩ J = IJ .

2. R/IJ ≃ R/I ×R/J .

Proof.
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1. Clearly, IJ ⊆ I and IJ ⊆ J . Then IJ ⊆ I ∩ J . Conversely, let x ∈ I ∩ J .
Since I + J = R, there exists some a ∈ I, b ∈ J such that a + b = 1. Then

x = x(a + b) = xa + xb. Now, x ∈ J and a ∈ I imply that xa ∈ IJ ; x ∈ I
and b ∈ J imply that xb ∈ IJ . Therefore, x = xa + xb ∈ IJ . It follows that

IJ = I ∩ J .

2. Define ϕ : R → R/I × R/J by ϕ(r) = (r + I, r + J). Then ϕ is a ring

homomorphism. The kernel is ker(ϕ) = I ∩ J = IJ .

Let a ∈ I, b ∈ J be such that a+b = 1. Then ϕ(a) = (a+I, a+J) = (0+I, a+

b+J) = (0+I, 1+J), and ϕ(b) = (b+I, b+J) = (a+b+I, 0+J) = (1+I, 0+J).

Then for any u, v ∈ R, ϕ(ub+va) = (u+I, v+J). Therefore, ϕ is surjective. By

the first isomorphism theorem, ϕ induces an isomorphism R/IJ ≃ R/I×R/J .

Example. 1. Z/(105) ≃ Z/(3)× Z/(5)× Z/(7).
2. Z[i]/(5) ≃ F5[x]/(x

2 + 1) ≃ F5[x]/(x− 2)× F5[x]/(x+ 2) ≃ F5 × F5.

3. Z[i]/(13) ≃ F13[x]/(x
2 + 1) ≃ F13[x]/(x− 5)× F13[x]/(x+ 5) ≃ F13 × F13.
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10.3 Using Gauss’s Lemma

Let R be a UFD. Let F = Frac(R). Then {p : p is a prime in R[x]} = {p :

p is a prime in R}
⋃
{f : f is irreducible in F [x], and the content c(f) = 1}.

Recall that in MATH2070, we have the following tools to decide whether a

polynomial f is irreducible.

(a) When f ∈ F[x], if deg(f) = 2 or 3, and if f has no root in F, then f is

irreducible in F[x].
(b) Reduce f mod p. If f ∈ Fp[x] is irreducible, and deg(f) = deg(f), then f is

irreducible in Z[x].
(c) Eisenstein’s criterion. Let f =

∑n
i=0 aix

i be primitive. Let p be a prime.

Suppose p | a0, a1, ..., an−1, p ∤ an, and p2 ∤ a0, then f is irreducible in Z[x].
Note that method (b) and (c) generalize: We can replace Z by any UFD R, and

replace p ∈ Z by a prime p ∈ R.
Exercise. (a) Factorize xp + yp in C[x, y].
(b) Show that xp+yp+zp is irreducible in C[x, y, z]. (Hint: Eisenstein criterion)

(c) Show that xy + zw is irreducible in C[x, y, z, w].
Answer. (a) xp + yp =

∏p−1
i=0 (x− yζ

2i+1
2p ), where ζ2p = e

2πi
2p .

(b) Consider g = x− yζ2p ∈ C[y][x]. It is irreducible in C(y)[x] as its degree in

x is 1. Since the leading coefficient of g is 1, g is primitive, thus it is a prime in

C[y][x] = C[x, y].
Consider f = xp + yp + zp ∈ C[x, y][z], that is, as a polynomial in z. Then

f is primitive, and x − yζ2p is a prime in C[x, y] that divides xp + yp, but (x −
yζ2p)

2 ∤ xp + yp, and (x − yζ2p) ∤ 1. By Eisenstein’s criterion, f is irreducible in

C[x, y][z] = C[x, y, z]
(c) Let f = xy + zw, and let R = C[y, z, w]. Note that f is a polynomial of

degree 1 in Frac(R)[x]. Then f is irreducible in Frac(R)[x]. It remains to show that

f is primitive, that is, gcd(y, zw) = 1 in R.

Since y is a prime in C[y], it is also a prime in R. If gcd(y, zw) ̸= 1, then

y ∤ 1. Then zw = gy for some g ∈ C[z, w, y] = C[z, w][y]. But degy(zw) = 0, and

degy(gy) ∈ {∞} ∪ Z≥1. Then zw ̸= gy, so gcd(y, zw) = 1.

Now, f is primitive in R[x], and f is irreducible in Frac(R)[x], so f is irreducible

in R[x] = C[xy, zw].
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